Laser de sonido fue creado por investigadores argentinos y alemanes

A partir de experimentos con polaritones en estados cuánticos llamados “condensado Bose-Einstein”, físicos de Argentina y Alemania generaron un nuevo tipo de láser de sonido, o “sáser”

Buenos Aires-(Nomyc)-El desarrollo experimental es un aporte para avanzar en el conocimiento científico y allana el camino para potenciales aplicaciones en las áreas de la computación cuántica, las comunicaciones y la salud y aunque los “Condensados Bose-Einstein” (BEC, por sus siglas en inglés) fueron teorizados por Satyendra Nath Bose y Albert Einstein hace casi un siglo, recién en  1995, Eric Cornell y Carl Wieman lograron generar en el laboratorio este tipo de estado cuántico, llamado “el quinto estado de la materia”, al utilizar átomos de rubidio a muy bajas temperaturas.

Ahora, un equipo de científicos de Argentina y Alemania demostró la generación de un “Láser de Sonido” de muy alta frecuencia que basa su funcionamiento en el acoplamiento de condensados de Bose-Einstein pero de otro tipo de partículas, los polaritones y este tipo de láser de sonido o “sáser” significa un aporte importante para avanzar en el conocimiento físico del mundo cuántico que   podría ser utilizado en distintos campos, en especial en tecnologías cuánticas, las telecomunicaciones, y en áreas biológicas y de la salud.   

Los polaritones son partículas del tipo bosón que se generan por el acoplamiento fuerte e indivisible entre fotones y una oscilación electrónica en un átomo, se pueden producir iluminando con un láser ciertos dispositivos resonantes y ante determinados estímulos, millones de ellos forman un condensado de Bose-Einstein y responden de forma sincronizada, como “un gran átomo” en el mismo nivel de energía. Se trata de la primera vez que se demuestra que se pueden utilizar para generar un láser de sonido o sáser.

El nuevo desarrollo consiste en un sistema híbrido que combina distintas herramientas de la física cuántica para generar un fenómeno de hipersonido producido por la interacción entre la luz y los polaritones BEC.

Los experimentos se realizaron en el Laboratorio de Fotónica y Optoelectrónica de la Comisión Nacional de Energía Atómica (CNEA), a temperaturas de 5 grados Kelvin o 268 grados centígrados bajo cero y el principal resultado fue la demostración de una generación de sonido “sáser” de muy alta frecuencia o “hipersonido”, inaudible para el ser humano.

Los físicos argentinos que realizaron este descubrimiento son egresados y docentes del Instituto Balseiro (CNEA y Universidad Nacional de Cuyo-UNCUYO), e investigadores del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) en el Laboratorio de Fotónica y Optoelectrónica de la CNEA, y en el Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), mientras que sus pares alemanes trabajan en el Paul-Drude-Institut de Berlín y la colaboración fue financiada por los ministerios de ciencia de ambos países.

Sobre por qué se trata de un sistema híbrido, Alejandro Fainstein, que es el director del proyecto en el Centro Atómico Bariloche, comenta que “lo novedoso del trabajo es que lograron demostrar la eficiencia de un nuevo enfoque”. 

En la investigación participaron también, de Argetina: Dimitri Chafatinos, Sebastián Anguiano, Andrés Reynoso, Axel Bruchhausen; y de Alemania: Alexander Kuznetsov, Klaus Biermann y Paulo Santos.

Para demostrar esto, los investigadores crearon un dispositivo que consiste microcavidades resonantes acopladas que combinan polaritones BEC, algo que se estudia en el campo de la electrodinámica cuántica y donde es experto el grupo alemán, con fenómenos de optomecánica resonante, en el que es experto el grupo argentino.

En estas cavidades resonantes se amplifican ondas, tanto de luz como de sonido y para estos experimentos, diseñaron una “nanoarquitectura” que incluye espejos que reflejan a la luz y el sonido, y que se mueven con las vibraciones, y “pozos” que funcionan como trampas para facilitar la condensación Bose-Einstein de los polaritones.

Ahora bien, el láser basa su funcionamiento en la utilización de un fenómeno de la física cuántica: la emisión estimulada de luz monocromática y coherente de “paquetes” de luz o “fotones” y por eso, sus siglas (que están en inglés) significan: “Amplificación de Luz por Emisión Estimulada de Radiación”.

En el caso del nuevo láser de sonido, los científicos lograron generar el mismo tipo de fenómeno pero con vibraciones mecánicas, es decir emitiendo hipersonido, y utilizando como “materia prima” un láser.

“El sonido producido es de muy alta frecuencia, unos 20GHz. es decir del orden de un millón de veces más alta frecuencia de lo que los humanos podemos escuchar”, señala Fainstein, y detalla que el límite audible es del orden de 20kHz. 

“En nuestro sistema híbrido utilizamos un láser continuo que cuando ingresa a la cavidad se encuentra con átomos, y forma estos polaritones BEC. La luz a veces viaja en la cavidad como luz, y otra parte del tiempo está capturada por los átomos generando oscilaciones de carga”, describe Fainstein.

“Al aumentar la potencia de excitación laser este tipo de polaritones forma el Condensado Bose-Einstein, que implica un estado de sincronización de la emisión de fotones y así, millones de polaritones se comportan como si fueran un mismo átomo, ´cantando´ al unísono en armonía” explica Fainstein.

“Esto da lugar a una emisión y luego reabsorción de luz simultánea y muy intensa y es este estado sincronizado de Bose-Einstein el que golpea los espejos de la cavidad, dando lugar a las vibraciones mecánicas coherentes y el resultado es un sáser cuya emisión está constituida por cientos de miles de ´fonones´, los cuantos de las vibraciones acústicas” continúa el investigador.

“Estas vibraciones a su vez afectan a la cavidad, es decir, al condensado de Bose-Einstein, ya que cambian el tamaño del resonador. Y de esa manera todo ‘oscila sincrónicamente’: el condensado de Bose-Einstein de polaritones, y las vibraciones”, explica Fainstein.

“El resultado de esta danza compleja que involucra a la luz, los electrones en los átomos y las vibraciones, es una forma muy eficiente de transformar un haz de luz, en emisión de ‘sonido’ coherente”, completa el egresado y docente del Instituto Balseiro, que ha dedicado con su grupo casi 20 años de trabajo en especializarse en optomecánica y la tecnología láser.

“Las ideas de la optomecánica de cavidades (CQOM por sus siglas en inglés) que utilizamos en este experimento reportado en 2020, surgen de los años 80s en el contexto del proyecto LIGO pero recién se empezaron a discutir y aplicar en dispositivos sólidos en los 10 últimos años. Lo mismo vale para los polaritones en cavidades resonantes. Su primera observación fue en 1992. Pero recién se logró la condensación de Bose-Einstein en 2006”, comenta Fainstein.

“Hace 17 años ninguna de los dos componentes esenciales de nuestro actual trabajo, la optomecánica cuántica en cavidades y los condensados de Bose-Einstein de polaritones, se habían descubierto y tuvimos que aprender mucho de lo que hicieron otros… Y en el camino intentar, fallar y frustrarnos”, agrega el físico.

Christian Schmiegelow, investigador del Grupo de Información Cuántica y Fundamentos del Departamento de Física de la Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, y que no participó de esta investigación, comenta sobre el trabajo: “Demuestran que pueden interconectar sistemas cuánticos de polaritones en cavidades mecánicas de manera coherente y este es un paso fundamental en el uso de estos sistemas para diversas aplicaciones y tecnologías cuánticas”.

“Este segundo paso, que resuelven los colegas del IB en este trabajo, resulta por lo general aún más difícil que el primero, ya que implica un diseño y control ingenioso de muchas variables”, afirma el físico de la UBA.

Una curiosidad es que, al igual que los polaritones BEC, el láser fue también teorizado por Einstein pero en 1917 y en 1960, Theodore Maiman construyó el primer láser en su laboratorio, y luego vendrían las múltiples aplicaciones en distintos ámbitos de la vida: hoy se podría decir que es casi ubicuo en distintos campos de la vida cotidiana.

Los experimentos: para realizar experimentos que derivaron en la primera demostración de este nuevo sáser, y que incluye un modelo teórico en el paper publicado, los físicos de Argentina utilizaron como base un dispositivo, es decir una microcavidad para generar polaritones desarrollado por sus pares de Alemania, del Paul-Drude-Institut.

En el Laboratorio de Fotónica y Optoelectrónica del CAB, los físicos argentinos prepararon un experimento de “micro-espectroscopía por fotoluminiscencia a bajas temperaturas”, incluyendo sus conocimientos de optomecánica de cavidades resonantes.

“El reto experimental fue lograr focalizar de manera precisa un haz láser en arreglos ordenados de estructuras cuadradas de 2um (micrómetros) de lado, todo esto a bajas temperaturas. Y, con un espectrómetro de muy alta resolución espectral, estudiar la luz que emite la muestra luego de ser excitada con el láser”, detalla el primer autor del paper, Dimitri Chafatinos, que es egresado del Balseiro de la Licenciatura en Física y de la Maestría en Ciencias Físicas.

“El armado del experimento nos llevó un periodo de 3-4 meses de calibración y mejoras experimentales para realizar las primeras mediciones. Luego, para llegar a los resultados siguieron muchos días y noches de realizar experimentos cambiando múltiples parámetros”, agrega Chafatinos, que en la actualidad es estudiante de Doctorado en el mismo instituto, una institución de educación pública dependiente de la CNEA y la UNCUYO.

 “Es interesante destacar que los polaritones BEC se encuentran en el mismo nivel de energía coherente y responden de forma sincrónica, es decir, cuando uno libera energía las partículas vecinas liberarán la misma cantidad de energía. Cuando esto sucede, la interacción entre las partículas y los espejos se amplifica, los polaritones comienzan a ‘pechar’ todos juntos los espejos causando la vibración de los mismos”, cuenta el físico.

“Esa vibración se puede pensar como ‘pulmones’ respirando, es decir, ambos espejos se separan y se acercan resonantemente. Este cambio de la distancia de los espejos a su vez modifica la luz que puede “vivir” dentro de la cavidad, y por lo tanto modifica los niveles energéticos de los polaritones”, describe el joven de 24 años, que es ex alumno del profesor Daniel Córdoba, creador del taller “Física para Todos” de Salta.

El artículo científico o paper que reporta este trabajo acaba de ser publicado en la revista Nature Communications.

Nomyc-21-9-20

« Volver