Luz y nanotecnología para prevenir la contaminación bacteriana en implantes médicos  

Investigadores del Instituto de Ciencias Fotónicas de Barcelona y la empresa B. Braun han desarrollado una técnica para evitar la formación de biofilms bacterianos en implantes médicos mediante el uso de luz combinada con nanopartículas de oro

Buenos Aires-(Nomyc)-Inventadas hace unos 50 años, las mallas quirúrgicas se convirtieron en elementos clave para la recuperación de cirugías de tejidos dañados, siendo la reparación de la hernia inguinal la más frecuente y cuando se implantan en el tejido del paciente, su diseño flexible y adaptable ayuda a mantener la musculatura libre de tensión y permite que los pacientes se recuperen mucho más rápido que a través de la cirugía convencional con solo puntos de sutura.

Sin embargo, el implante de este tipo de productos sanitarios en el cuerpo de un paciente conlleva un riesgo de contaminación bacteriana durante la cirugía que puede derivar en la posterior formación de un biofilm sobre la superficie del implante.

Estos biofilms tienden a actuar como un recubrimiento impermeable a los medicamentos y suelen impedir que los agentes antibióticos alcancen y ataquen las bacterias del biofilm y no se pueda detener la infección.

Debido a esto muchas terapias con antibióticos, que son limitadas en el tiempo, podrían fallar contra estas bacterias resistentes y el paciente podría necesitar una segunda intervención para explantar la malla con los consiguientes riesgos y costes que conllevan este tipo de intervenciones.

En el pasado, se habían desarrollado varios métodos para prevenir la contaminación de los implantes durante la cirugía y los hospitales han implementado protocolos quirúrgicos de asepsia para combatir este tipo de contaminación bacteriana aunque no se ha conseguido resolver del todo este problema.

Ahora, los investigadores del ICFO Ignacio de Miguel y Arantxa Albornoz, dirigidos por el profesor ICREA Romain Quidant, en colaboración con los investigadores Irene Prieto, Vanesa Sanz, Christine Weis y Pau Turon, de la empresa B. Braun Surgical, S.A., fabricante de productos sanitarios, crearon una técnica que utiliza la nanotecnología y la fotónica para mejorar drásticamente la prevención de la colonización de los implantes quirúrgicos.

A través de una colaboración que se inició en 2012, el equipo desarrolló una malla quirúrgica con una característica particular: la superficie de la malla está modificada químicamente para anclar millones de nanopartículas de oro debido a que se demostró que las nanopartículas de oro convierten de manera muy eficiente la luz en calor en regiones muy localizadas, de alcance nanométrico, efecto útil para destruir la membrana celularde las bacterias y deshacer el entramado protector del biofilm constituido por moléculas denominadas proteoglicanos.

La técnica del uso de nanopartículas de oro en procesos de conversión de luz-calor ya se había probado en estudios anteriores en tratamientos contra el cáncer en el ICFO  en varios estudios previos respaldados por la Fundación Cellex, en otro ejemplo de cómo el apoyo filantrópico que pretende abordar problemas fundamentales puede terminar dando lugar a importantes aplicaciones prácticas.

Reducir costos en operaciones recurrentes                                                                                                                                                      En este caso en particular, teniendo en cuenta que más de 20 millones de operaciones de reparación de hernias se realizan cada año en todo el mundo, se creyó que este método podía reducir los costes médicos de las operaciones por recurrencia y al mismo tiempo facilitar la eficacia de los tratamientos con antibióticos que actualmente se emplean para combatir este problema.

Por lo tanto, en su experimento in vitro y mediante un exhaustivo proceso de desarrollo, el equipo recubrió la malla quirúrgica con millones de nanopartículas de oro, extendiéndolas uniformemente sobre toda la estructura.

Las mallas se testaron en diferentes momentos a lo largo del tiempo para garantizar la estabilidad de las partículas a largo plazo, la no degradación del material y la no liberación de nanopartículas al entorno. Observaron una distribución homogénea de las nanopartículas sobre la estructura utilizando un Microscopio Electrónico de Barrido (SEM).

Una vez que se obtuvo la malla modificada, el equipo la expuso a la bacteria S. aureus durante 24 horas hasta que observó la formación de un biofilm en la superficie y luego expusieron la malla a pulsos cortos e intensos de luz infrarroja cercana (800 nm) durante 30 segundos para asegurar que se alcanzara el equilibrio térmico y repitieron el procedimiento 20 veces con un intervalo de cuatro segundos de descanso entre cada pulso.

Luego de esto descubrieron que “iluminar la malla con una frecuencia específica inducía resonancias plasmónicas de superficie localizadas en las nanopartículas, lo cual resulta en la conversión eficiente de luz en calor, quemando así las bacterias sobre la superficie”.

En segundo lugar que “si se usa un microscopio confocal, es decir uno que mejora los contraste de colores, de fluorescencia, pudieron observar cuantas bacterias habían muerto y cuantas estaban aún vivas”.

Con respecto a las bacterias que habían sobrevivido, observaron que las del biofilm se convirtieron en células planctónicas, recuperando su sensibilidad a la terapia con antibióticos y a la respuesta del sistema inmunológico y en cuanto a las bacterias muertas, observaron que al aumentar la cantidad de luz que llega a la superficie de la malla, las bacterias perdían su adherencia y se desprendían de la superficie.

En tercer lugar, confirmaron que operar en rangos de luz infrarroja cercana era perfectamente compatible con condiciones in vivo, por lo que es probable que esta técnica no dañase el tejido sano circundante.

Por último, repitieron el tratamiento y confirmaron que el calentamiento recurrente de la malla no había afectado a su eficiencia de conversión de luz a calor.

El profesor Quidant explica que “los resultados de este estudio han allanado el camino hacia el uso de nanotecnología plasmónica para prevenir la formación de biofilms bacterianos en la superficie de los implantes quirúrgicos”.

“Todavía hay varias cuestiones que deben abordarse, pero es importante enfatizar que dicha técnica significará un cambio radical en los procedimientos quirúrgicos y la posterior recuperación del paciente” agrega.

Como director de Investigación y Desarrollo de B. Braun Surgical, Pau Turon explica que “nuestro compromiso con los profesionales de la salud para ayudarles a evitar infecciones hospitalarias nos empuja a desarrollar nuevas estrategias para combatir las bacterias y los biofilms”.

“Además, el equipo de investigación está explorando las posibilidades de extender dicha tecnología a otros sectores en los cuales los biofilms deberían ser evitados” concluye Turon.

El estudio se ha publicado en la revista Nano Letters y destacado en Nature Photonics.                                                                                    Nomyc-14-6-19

 

 

« Volver